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Abstract

The development of increasingly high-throughput and sensitive
mass spectroscopy-based proteomic techniques provides new
opportunities to examine the physiology and pathophysiology of
many biologic fluids and tissues. The purpose of this study was
to determine protein expression profiles of high-abundance
synovial fluid (SF) proteins in health and in the prevalent joint
disease osteoarthritis (OA). A cross-sectional study of 62
patients with early OA (n = 21), patients with late OA (n = 21),
and control individuals (n = 20) was conducted. SF proteins
were separated by using one-dimensional PAGE, and the in-gel
digested proteins were analyzed by electrospray ionization
tandem mass spectrometry. A total of 362 spots were examined
and 135 high-abundance SF proteins were identified as being
expressed across all three study cohorts. A total of 135 SF
proteins were identified. Eighteen proteins were found to be

significantly differentially expressed between control individuals
and OA patients. Two subsets of OA that are not dependent on
disease duration were identified using unsupervised analysis of
the data. Several novel SF proteins were also identified. Our
analyses demonstrate no disease duration-dependent
differences in abundant protein composition of SF in OA, and
we clearly identified two previously unappreciated yet distinct
subsets of protein profiles in this disease cohort. Additionally,
our findings reveal novel abundant protein species in healthy SF
whose functional contribution to SF physiology was not
previously recognized. Finally, our studies identify candidate
biomarkers for OA with potential for use as highly sensitive and
specific tests for diagnostic purposes or for evaluating
therapeutic response.

Introduction
Osteoarthritis (OA), which is characterized by progressive
destruction of articular cartilage, is by far the most common
musculoskeletal disorder in the world, afflicting 40 million peo-
ple in the USA alone [1,2]. Although this disorder is one of the
most common among the aging population, our understanding
of its etiology and pathophysiology, as well as our ability to
detect early disease, is strikingly poor. A number of factors
have frustrated efforts to elucidate the disease, and to develop
diagnostic and treatment approaches; these include conflict-
ing observations in epidemiologic studies, protracted disease
duration, poorly correlated symptoms and radiographic find-
ings, and lack of effective therapies. Compounding these diffi-
culties, experimental mouse models are lacking and diseased
tissue for experimental analyses is typically obtained from

patients with advanced disease at joint replacement surgery,
thereby limiting insight to late stages of disease.

These challenges notwithstanding, extensive disease-focused
research has revealed that OA is not simply the result of age-
related cartilage wear. Rather, the pathophysiology of disease
involves the entire joint structure, including cartilage, syn-
ovium, ligaments, subchondral bone, and periarticular muscle.
Documented contributors to this pathophysiology include
genetic predisposition, trauma, inflammation, and metabolic
changes. These insights have led many authorities to hypoth-
esize that OA is best thought of as a group of disorders with
varied etiologies whose final common clinical phenotypes con-
verge [3].
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IGF = insulin-like growth factor; LC-MS/MS = liquid chromatography with tandem mass spectrometry; MMP = matrix metallproteinase; OA = oste-
oarthritis; PCA = principal component analysis; RAGE = receptor for advanced glycation end-products; SF = synovial fluid.
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There exists a particular dearth of understanding of etiologic
contributors in early OA pathophysiology and stage-specific
events in disease progression. Because synovial fluid (SF) is
in contact with the primary tissues affected by disease (carti-
lage and synovium) and has been implicated as a contributor
to disease pathophysiology, we hypothesized that proteomic
analysis of SF may provide a minimally invasive opportunity to
derive further stage-specific insight into OA disease. The
advent of increasingly high-throughput and sensitive mass
spectroscopy analytic methods and powerful statistical mode-
ling, combined with exhaustive sequencing of the human
genome, have facilitated unsupervised proteomic approaches
to discovery of disease mechanisms. Here, we report on the
results of a pilot cross-sectional study utilizing liquid chroma-
tography with tandem mass spectrometry (LC-MS/MS)
designed to identify differential expression of high-abundance
SF proteins from healthy individuals and patients with early-
stage and late-stage OA. Our analyses define a relative abun-
dance of a large number of SF proteins and demonstrate that
the protein composition of SF differs substantially between
healthy individuals and patients with OA. Interestingly,
although our data suggest that there is no significant change
in the composition of high-abundance proteins between early
and late OA, we identify distinct patterns of protein expression
within OA patients that suggests identifiable subsets of dis-
ease that are independent of disease duration. Furthermore,
we identify a panel of protein biomarkers that are of potential
use in distinguishing SF from patients with OA from that of
healthy study participants.

Materials and methods
The experimental design for this study involved differential pro-
tein profiling of knee SF, using LC-MS/MS, from 20 healthy
control individuals and two cohorts of 21 patients diagnosed
with early and late OA. All samples for the study were col-
lected from patients within our tertiary care referral center. Our
hospital's institutional review board approved all aspects of
this study. All SF samples included in the study were snap-fro-
zen in liquid nitrogen immediately after acquisition from the
knee joint.

Control individuals
Twenty individuals without any prior history of knee trauma,
chronic knee pain, prior knee surgery, blood dyscrasias, can-
cer, chondrocalcinosis, corticosteroid injection, or nonsteroi-
dal anti-inflammatory drug use during the preceding eight
weeks were recruited and underwent plain anterior-posterior,
lateral, and sunrise view radiographs of their right/left knee. A
total of 78 individuals qualified for entry into our study based
on the criteria specified above and formed the study 'control'
cohort. An arthrocentesis was attempted on each of these
patients in order to obtain the 20 samples required for our
study design. Samples that were free from visible blood con-
tamination and consisted of a minimum of 500 μl were
included in the study.

Patients with early osteoarthritis
Samples were procured from 21 patients presenting for elec-
tive arthroscopic debridement of an inner-third tear of the
medial meniscus with a minimum age of 45 years. Inner-third
meniscal tears are relatively avascular, and therefore they are
least likely to generate an inflammatory response that could
confound proteomic analysis of protein expression related
expressly to OA. No patients with a prior history of clinically
significant knee trauma or infection, surgery, blood dyscrasia,
cancer, corticosteroid injection, or chondrocalcinosis were
included in the study. Because of the meniscal tear, prior non-
steroidal anti-inflammatory drug use was not a practical exclu-
sion criterion. The diagnosis of early OA was made at the time
of arthroscopy based on the presence of arthroscopically visi-
ble chondral erosion. SF was acquired at the time of arthro-
scopic trocar placement in order to avoid blood contamination
of the samples.

Patients with late osteoarthritis
One SF sample was procured from each of 21 patients pre-
senting for elective total knee replacement for management of
primary idiopathic OA. The exclusion criteria were identical to
those for patients with early OA. Each patient had docu-
mented joint space narrowing of all three compartments of the
knee on plain radiographs. The SF was acquired from the knee
joint before arthrotomy so as to avoid blood contamination.

Power analysis
Supervised pair-wise comparisons were performed for each
protein between the three disease classes (control: n = 20;
early OA: n = 21; and late OA: n = 18). Here, in the least opti-
mal two-class comparison scenario, the two classes of sample
size 18 (patients with late OA) and 20 (control individuals)
possess a minimal statistical power of 80% at the 0.05 level of
significance (α) to detect a 50% relative difference in the pres-
ence/abundance of a tested protein between classes. The null
hypothesis was that there is no difference in the distribution of
the tested protein's presence/abundance between the two
classes.

Reduction/alkylation of synovial fluid samples and 
electropheresis
Each sample was reduced and alkylated in a lysis buffer before
it was subjected to electrophoresis. Each sample was fraction-
ated into nine molecular weight regions. An in-gel tryptic
digestion was performed on the nine slices from each sample.
After 24 hours of tryptic digestion, the peptides were
extracted and lyophilized to dryness. The lyophilate was re-dis-
solved into a loading buffer for mass spectrometry.

Mass spectrometry
Samples are run on a LCQ DECA XP plus Proteome X work-
station (Thermo-Finnigan, Waltham, MA, USA). For each run
(2.5 hours), half of each sample was separated on a 75 μm
(internal diameter) × 18 cm column packed with C18 media.
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In between each sample, a standard of a 5 Angio mix peptides
was eluted (Michrom BioResources, Auburn, CA, USA) to
ascertain column performance, and observe any potential car-
ryover that might have occurred. The LCQ is run in a top five
configuration, with one mass spectrometry scan and five tan-
dem mass spectrometry scans.

Processing of mass spectrometry data
Mass spectrometric peptide sequence spectra were searched
against the National Center for Biotechnology Information's
RefSeqHuman database [4] with the addition of contaminants
using SEQUEST [5]. Variable modifications for oxidized
methione and carboxyamidomethylated cysteine were permit-
ted. Data were filtered using the following criteria: Xcorr
greater than or equal to 1.5, 2.5 and 3.0 for a charge state of
1, 2 and 3, respectively; a ΔCn greater than 0.1; and an RSp
equal to 1. All peptides satisfying these criteria were then
mapped back to all human protein sequences in RefSeq, with
a string search for exact matches. For each gene identified
within a gel slice a minimal (duplicates removed) set of pep-
tides was identified. This list was sorted by the total number of
peptides in descending order. The first peptide array in this list
was defined as a cluster and compared pair-wise with every
other array in the list by determining whether the N-1 compar-
ison was an equal or a proper subset. If the peptide array was
found to be an equal or proper subset, then it was added to
the cluster and removed from the list. The process was
repeated until all comparisons were exhausted. For each clus-
ter, the gene with the greatest number of peptide elements
was assigned to designate the cluster. If multiple genes within
the cluster had the same number of peptides, then an arbitrar-
ily selected member was assigned as representative of the
cluster. Peptides shared between clusters were identified and
omitted from further analysis.

A total of 342 gel-slice distinct peptides were detected by LC-
MS/MS in the 62 samples in this study. Each sample was
divided into nine protein gel slices. These 342 slice-distinct
peptides are comprised of 135 unique GenInfo accession-
identified proteins. Peptide area was used as the primary
measure of protein abundance in the study. Peptide area was
calculated using the area function in BioWorks 3.1 (Thermo
Electron Corporation, Waltham, MA, USA) with scan window
of 60. Protein area was calculated as the sum of the areas for
each independent analyte for all unique peptides within a pro-
tein cluster. If multiple areas were identified for a given analyte,
then the largest area was selected and used in the in the area
calculation. An independent analyte is defined as unique mass
to charge identified in the SEQUEST search satisfying the fil-
tering criteria.

Principal component analysis
Recalling that 342 slice-distinct peptides were assayed
throughout the 62 samples in this study, each sample is repre-
sented as a mathematical vector of 342 feature components.

Each feature component is the area readout of a specific gel
slice-distinct peptide indicating the abundance of that peptide
in the sample. The primary dataset is a 342-peptide × 62-sam-
ple matrix of area readouts. Unsupervised principle compo-
nent analysis (PCA) was used to assess the global sample
variations and relationships in this dataset – between all 62
samples across 342 protein features – and to summarize the
dataset in terms of a reduced number of dominant protein fea-
tures that most affect the global sample variation [6-8].
Because we are using Pearson correlation as a measure of
similarity between sample proteomic (area) profiles, each sam-
ple was normalized to have average 0 and variance 1 across
its 342-feature protein areas before PCA. With area as a
measure of slice-distinct protein abundance and sample pro-
file similarity in terms of Pearson correlation, the first three prin-
cipal components (PCs) capture 98.33% of global sample
variation.

We note that the primary data matrix of 342 proteins × 62
samples is sparse; 13,628 (about 64%) of the 21,204 entries
are 0, and the remaining non-zero area entries (about 36%)
range from 101 to 106. Given this characteristic of the data,
two samples may have a high Pearson correlation that is due,
artifactually, to a small number of outlying (extremal) area rea-
douts. To mollify the effect of these outliers in global sample
variations, we additionally performed PCA on sample-wise
rank-normalized data. For each sample, the area of each pep-
tide is replaced with the ranking of the peptide's area from 1
to 342 (or multiples of 1/2 within this range in cases where
area values are identical) in relation to the areas of other pep-
tides in that sample. Because we are using Pearson correla-
tion as a measure of similarity between sample proteomic
(area) profiles, each sample was normalized to have average 0
and variance 1 across its 342-feature peptide areas before
PCA. With rank-normalized area as a measure of slice-distinct
protein abundance and sample profile similarity in terms of
Pearson correlation, the first three PCs capture 32.48% of
global sample variation.

Wilcoxon's rank sum test
For each protein, the nonparametric Wilcoxon's ranksum test
was used to assess whether the difference in medians
between two disease conditions (control, early OA, and late
OA) of area measurements was statistically significant
(whether the distributions of these area measurements overlap
less than would be expected by chance) [9]. The null hypoth-
esis is that the two independently measured conditions will be
drawn from a single population, and therefore the medians will
be equal. In this study, the null hypothesis (that a particular
protein is differentially abundant) was rejected for P <
0.000001.
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Results
Synovial fluid protein profiles
The proteins identified in our LC-MS/MS analyses are pre-
sented in Table 1. Note that 342 gel slice-distinct peptides,
comprising a total cohort of 135 unique proteins, were
detected across the 62 samples. Of these, 18 proteins repre-
sented keratin species (data not shown) that we considered to
be contaminants from the cutaneous puncture performed dur-
ing arthrocentesis and so removed them from further consid-
eration, leaving a total of 117 SF proteins identified.

Unsupervised principal component analysis of protein 
profiles
To identify variations between samples in terms of global SF
proteomic profile, we used PCA of the 62 samples across the
342 slice-distinct protein area measurements. The initial PCA
on the protein area measurements of all 62 samples identified
three late OA sample profiles as statistical outliers from the
remaining 59 samples (data not shown). These three outlier
samples were removed from subsequent data analyses, leav-
ing 342 slice-distinct proteins × 59 samples in the dataset
under consideration. PCA of the protein area measurements
of this dataset revealed that the two maximal and important
directions of sample variance, PCs 1 and 2 accounted for
90.35% of the total sample variance. Notable, in the PC1-PC2
plane, control individuals (n = 20) are more homogeneous
than patients with early OA (n = 21) and those with late OA (n
= 19) in terms of global proteomic profile. The direction of
maximal variance of PC1 correlates strongly with OA disease
state.

Next, the protein area measurements of this dataset of 342
slice-distinct proteins × 59 samples were rank-normalized for
each sample (see Materials and methods, above) and PCA
was performed on the resulting rank-normalized dataset. Sim-
ilar to the protein area PCA, PCA of this dataset indicated that
the control sample profiles were more homogeneous than the
OA sample profiles (Figure 1). Although there was a clearer
difference between the aontrol and OA sample profiles, this
unsupervised analysis identified no definitive disease duration-
dependent difference in expression profiles of SF high-abun-
dance proteins in OA patients (Figure 1). Interestingly, despite
this lack of difference between early-stage and late-stage dis-
ease, the PCA of the rank-normalized protein area profiles
revealed two distinct subpopulations among OA samples,
which we denote as OA group 1 (n = 17) and OA group 2 (n
= 21). These two OA subpopulations do not appear to segre-
gate by age, sex, ethnicity, or number of medications taken.

Differentially abundant proteins in healthy versus 
osteoarthritis proteomic profiles
We next sought to identify proteins that are differentially abun-
dant (by area measures) between healthy individuals and
patients with OA. Because the PCA analysis identified no sig-
nificant difference between expression profiles from patients

with early and late OA, we pooled data from these two cohorts
and performed supervised Wilcoxon's ranksum tests to iden-
tify unique proteins with differential abundance between the
healthy and OA groups. This method identified a subset of 18
of the 342 total proteins analysed that met our cutoff value for
differential expression (P < 0.00001; Figure 2 and Table 2).
The small P value used in this mathematical algorithm was
chosen arbitrarily in order to reduce the number of candidate
protein biomarkers identified to a manageable number that will
appropriate for selective future study using more conventional
techniques. Perhaps unsurprisingly, these 18 proteins are
among the top 100 sample variation-contributing proteins in
PC1 and PC2 in the previous PCA. Interestingly, a substantial
majority (15/18) are significantly more abundant in the OA
group than in the healthy group (Figure 2 and Table 2).

Differentially abundant proteins in discrete 
osteoarthritis subsets
Having identified two apparent subsets of patients with OA in
our unsupervised PCA of the rank-normalized protein area
data, we conducted a supervised Wilcoxon ranksum test to
identify differential protein expression between these OA sub-
sets irrespective of disease duration. Using a highly significant
P value cutoff (P < 0.00005), we identified 12 proteins that
exhibit differential expression between these OA subsets (Fig-
ure 3).

Abundant synovial fluid proteins as potential 
biomarkers
Having identified a subset of 18 proteins with significantly dif-
ferent expression levels between patients with OA and healthy
control individuals, we proceeded to explore the sensitivity and
specificity of these proteins as biomarkers for differentiating
health from disease. Examining sensitivity and specificity of
individual proteins demonstrated that several of the 18 pro-
teins in this panel hold promise as potential biomarkers for dis-
tinguishing health from disease (Figure 2 and Table 2). Indeed,
the best sensitivity and specificity for proteins in this subset
was noted for complement component 3, which exhibited sen-
sitivity and specificity of 90% and 85%, respectively.

Discussion
Although recent studies have highlighted the long appreciated
importance of SF in joint function [10,11], identification of the
protein constituents of SF and elucidation of their function
remain areas of active investigation. Advances in proteomic
analytic techniques afford new opportunities to gain insight
into the function of complex biologic fluids in health and dis-
ease. By using one-dimensional gel electropheresis and LC-
MS/MS, in the present study we provide quantitation of
abundant proteins in SF in a cohort of 62 individuals, including
healthy individuals and patients with early and late OA. Our
results show clear differences in protein profiles between
healthy and diseased SF, identify many SF proteins that are
known to be involved in numerous homeostatic and pathologic
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Table 1

Synovial fluid proteins identified

GI# Protein

21493031 A kinase (PRKA) anchor protein 13

4501885 Actin, beta

4501887 Actin, gamma 1

4501889 Actin, gamma 2, smooth muscle, enteric

4501987 Afamin

6995994 Aggrecan 1 (chondroitin sulfate proteoglycan 1, large aggregating proteoglycan, antigen identified by monoclonal antibody 
A0122)

4502027 Albumin

55743106 Alpha 3 type VI collagen isoform 5 precursor (NP_476508)

21071030 Alpha-1-B glycoprotein

4502067 Alpha-1-microglobulin/bikunin precursor

4502337 Alpha-2-glycoprotein 1, zinc

4502005 Alpha-2-HS-glycoprotein

4557225 Alpha-2-macroglobulin

40254482 Amylase, alpha 1A; salivary

4502133 Amyloid P component, serum

4557287 Angiotensinogen (serine [or cysteine] proteinase inhibitor, clade A [alpha-1 antiproteinase, antitrypsin], member 8)

4502149 Apolipoprotein A-II

4502151 Apolipoprotein A-IV

4502153 Apolipoprotein B (including Ag [x] antigen)

4502157 Apolipoprotein C-I

32130518 Apolipoprotein C-II

4502163 Apolipoprotein D

4557325 Apolipoprotein E

4557327 Apolipoprotein H (beta-2-glycoprotein I)

4502397 B-factor, properdin

4757826 Beta-2-microglobulin

57634528 Carboxypeptidase N, polypeptide 2, 83 kD (NP_001300 removed for review)

47777317 Cartilage acidic protein 1

51944962 Cartilage intermediate layer protein (NP_003604)

40217843 Cartilage oligomeric matrix protein

4557485 Ceruloplasmin (ferroxidase)

42716297 Clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, 
apolipoprotein J)

42740907 Clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, 
apolipoprotein J)

4503635 Coagulation factor II (thrombin)

15011913 Collagen, type VI, alpha 1

7705753 Complement component 1, q subcomponent, alpha polypeptide

11038662 Complement component 1, q subcomponent, beta polypeptide

56786155 Complement component 1, q subcomponent, gamma polypeptide (NP_758957)

4502493 complement component 1, r subcomponent
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41393602 Complement component 1, s subcomponent

14550407 Complement component 2

4557385 Complement component 3

4502501 Complement component 4A

14577919 Complement component 4A

50345296 Complement component 4B preproprotein (NP_001002029)

38016947 Complement component 5

4559406 Complement component 6

45580688 Complement component 7

4557393 Complement component 8, gamma polypeptide

54792787 Complement factor H-related 3 (NP_066303)

4885165 Cystatin A (stefin A)

4503107 Cystatin SA

42544239 D component of complement (adipsin)

16751921 Dermcidin

58530842 Desmoplakin isoform II (NP_001008844)

11761629 Fibrinogen, alpha chain isoform alpha preproprotein

4503689 Fibrinogen, alpha chain isoform alpha-E preproprotein

11761631 Fibrinogen, B beta polypeptide

4503715 Fibrinogen, gamma chain isoform gamma-A precursor

11761633 Fibrinogen, gamma chain isoform gamma-B precursor

47132557 Fibronectin 1 isoform 1 preproprotein

47132551 Fibronectin 1 isoform 2 preproprotein

16933542 Fibronectin 1 isoform 3 preproprotein

47132555 Fibronectin 1 isoform 4 preproprotein

47132553 Fibronectin 1 isoform 5 preproprotein

47132549 Fibronectin 1 isoform 6 preproprotein

4504165 Gelsolin (amyloidosis, Finnish type)

6006001 Glutathione peroxidase 3 (plasma)

32483410 Group-specific component (vitamin D binding protein)

4504375 H factor 1 (complement)

4826762 Haptoglobin

45580723 Haptoglobin-related protein

4504345 Hemoglobin, alpha 1

4504349 Hemoglobin, beta

4504351 Hemoglobin, delta

11321561 Hemopexin

4504489 Histidine-rich glycoprotein

4504579 I factor (complement)

21489959 Immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu polypeptides

Table 1 (Continued)

Synovial fluid proteins identified
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13399298 Immunoglobulin lambda-like polypeptide 1

4826772 Insulin-like growth factor binding protein, acid labile subunit

4504781 Inter-alpha (globulin) inhibitor H1

4504783 Inter-alpha (globulin) inhibitor H2

31542984 Inter-alpha (globulin) inhibitor H4 (plasma Kallikrein-sensitive glycoprotein)

4504893 Kininogen 1

54607120 Lactotransferrin (NP_002334)

4504985 Lectin, galactoside-binding, soluble, 7 (galectin 7)

5031885 Lipoprotein, Lp(a)

4505047 Lumican

9257232 Orosomucoid 1

4505529 Orosomucoid 2

19923106 Oaraoxonase 1

4505881 Plasminogen

51476111 PREDICTED: similar to Apolipoprotein A-I precursor (Apo-AI) (XP_496536)

51476113 PREDICTED: similar to Apolipoprotein C-III precursor (Apo-CIII) (XP_496537)

51472914 PREDICTED: similar to KIAA1501 protein (XP_370973)

4506355 Pregnancy-zone protein

4505821 Prolactin-induced protein

4506117 Protein S (alpha)

5031925 Proteoglycan 4, (megakaryocyte stimulating factor, articular superficial zone protein, camptodactyly, arthropathy, coxa vara, 
pericarditis syndrome)

55743122 Retinol-binding protein 4, plasma precursor (NP_006735)

4506773 S100 calcium binding protein A9 (calgranulin B)

50363217 Serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 (NP_000286)

50363221 Serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 (NP_001002235)

50363219 Serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 (NP_001002236)

4502595 Serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 6

50659080 Serine (or cysteine) proteinase inhibitor, clade A, member 3 precursor (NP_001076)

4502261 Serine (or cysteine) proteinase inhibitor, clade C (antithrombin), member 1

39725934 Serine (or cysteine) proteinase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 1

4557379 Serine (or cysteine) proteinase inhibitor, clade G (C1 inhibitor), member 1 (angioedema, hereditary)

10835095 Serum amyloid A4, constitutive

41150478 Similar to immunoglobulin M chain

4507557 Tetranectin (plasminogen binding protein)

4557871 Transferrin

4507725 Transthyretin (prealbumin, amyloidosis type I)

4507895 Vimentin

18201911 Vitronectin (serum spreading factor, somatomedin B, complement S-protein)

GI#, GenInfo accession.

Table 1 (Continued)

Synovial fluid proteins identified
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pathways, and – intriguingly – identify two distinct
subpopulations of patients with OA whose membership
occurs independently of disease duration. These data coupled
with the MudPIT (multidimensional protein identification tech-
nology) quantitation technique allows us to predict relative lev-
els of protein expression within the context of a one-
dimensional gel compared with a two-dimensional gel, as pre-
viously described [12-14].

Comparison of protein abundance between healthy individuals
and OA patients identified 18 highly significant (P <
0.000001) and a large number of less statistically significant
differentially expressed proteins (Tables 1 and 2, and Figure
2), many of which were previously identified by other investiga-
tors. Of these 18 proteins, three exhibit decreased expression
levels in OA patients whereas 13 are more abundant in OA
than in healthy individuals (Figure 2 and Table 2). This differen-
tial profile provides potential insight into the pathophysiology
of OA. Increased abundance of aggrecan and cystatin A in SF
from healthy individuals is consistent with the current concept
that loss of cartilage observed in OA results from proteolytic
destruction of extracellular matrix [15-24]. It is particularly
interesting that cystatin A, an inhibitor of cysteine proteases
(for example, cathepsins), is elevated in healthy SF, whereas
serine protease inhibitors, which are abundant in health and
disease in our analyses and have been implicated in the patho-
genesis of OA [21,25-27], are not among the panel of highly
significant differentially expressed proteins. This observation
provides a strong rationale for continued focus on the contri-

bution of both classes of protease inhibitors to OA
pathogenesis.

Dermcidin, the third abundant SF protein demonstrating
increased expression in normal individuals as compared with
OA patients is a novel antimicrobial peptide that was previ-
ously identified in human sweat [28]. Dermcidin peptides
exhibit broad-spectrum antimicrobial activity against bacteria
and fungal species, and are derived from post-translational
and post-secretion processing by a series of proteases that
are present in sweat glands [28,29]. To our knowledge, this is
the first report to identify dermcidin expression in SF; the role
of this protein in healthy joint physiology and the pathophysio-
logic consequences of decreased expression in OA require
further investigation.

Somewhat surprisingly, examination for disease stage-specific
(early versus late OA) differences in abundant protein expres-
sion using unsupervised analyses revealed no significant dif-
ferences in these cohorts. Although it is likely that further
analysis of low-abundance proteins may yield stage-specific
patterns of protein composition in SF, this finding is consistent
with the hypothesis that subsets of pathogenic mechanisms
that contribute to OA disease initiation are present throughout
the course of disease. This observation holds significant prom-
ise for both early identification of patients at risk for subse-
quent severe OA and for early therapeutic interventions to
interrupt progression of disease.

Intriguingly, our unsupervised analyses identify two clearly dis-
tinct subpopulations of patients with OA that are independent
of disease duration. Supervised (Wilcoxon ranksum test) anal-
ysis identified 12 protein species differentially populating the
SF of these OA subsets. It is noteworthy that proteins present
in blood comprise the entire cohort of proteins that contribute
to identification of these OA subpopulations. This observation
could result from differences in vascular permeability as a dis-
tinguishing pathophysiologic feature of a disease subset in
patients with OA. However, most of these proteins were iden-
tified more recently as products of the cells within joint tissue:
chondrocytes and synoviocytes [30,31]. Thus, the differences
observed could also reflect differences resulting from OA joint
physiology. Unfortunately, the design of this pilot study pre-
cludes examination of phenotypic differences in these sub-
groups. Utilizing these 12 species in future expanded
longitudinal cohorts of OA patients will further clarify both the
presence of disease phenotype subsets and the utility of quan-
tifying these proteins in SF as a method of identifying OA sub-
phenotypes for prognostic and therapeutic purposes.

Although a primary objective of our study was examination of
differential protein expression of abundant SF proteins
between healthy individuals and OA patients, our analyses
also provide a wealth of information about the abundant pro-
tein composition of SF in health. Many of the proteins identi-

Figure 1

Principal component analysis of all 342 protein spotsPrincipal component analysis of all 342 protein spots. Differential 
expression of the protein profile for healthy individuals versus patients 
with late and early osteoarthritis is observed using this unsupervised 
analytical technique. Note the two distinct subsets of protein expres-
sion in patients with osteoarthritis that cluster independently of disease 
duration. EOA, early osteoarthritis; LOA, late osteoarthritis; Nor, healthy 
individuals; PC, principal component; PCA, principal component 
analysis.
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fied have been implicated in pathways thought to contribute to
the physiologic homeostasis of cartilage, synovial tissue, and
SF. We consider these proteins within the context of the path-
ways with which they have previously been associated, in
order to provide a synopsis of their potential biologic signifi-
cance (Table 3).

Serine protease inhibitors
We identified numerous serine protease inhibitors in the SF of
both healthy individuals and patients with diseasepatients
(Table 3). The abundance and large number of species of ser-
ine proteinase inhibitors is consistent with the importance of
the diverse and highly regulated functions of serine protein-
ases in joint function. Included among the host of physiologic
processes in diarthrodial joints regulated by these species are
regulation of matrix metalloproteinases (MMPs), aggrecanase,
plasmin, tissue mitogens and angiogenesis activity, as well as
inhibition of inflammatory leukocyte proteases such as neu-
trophil elastase and regulation of fibroblast mitogen binding to
extracellular matrix [32-42]. Numerous lines of evidence dem-
onstrate that synovial lining and cartilage extracellular matrix
undergo active remodeling with joint homeostasis resulting
from a delicate balance between matrix degradation, matrix

synthesis, and matrix assembly [43]. The importance of this
remodeling has been underscored by oncology trials of MMP
inhibitors, whose side effects included a progressive polyar-
thritis with joint pain and stiffness [44-49]. Because the regu-
lation and biologic function of a number of these serine
proteinase inhibitors remains incompletely defined, our analy-
ses provide further rationale for their continued study.

Inflammatory cascades and response to oxidative stress
Oxidative damage and activation of mitogen-activated protein
kinases have been reported to be involved in the pathogenesis
of OA; our studies identify proteins implicated in these path-
ways as high-abundance species in SF. S100 activates the
receptor for advanced glycation end-products (RAGE)
[50,51]. Among the RAGE-stimulated mitogen-activated pro-
tein kinase downstream signaling cascades is the increased
activity of nuclear factor-κB, which results in increased expres-
sion of MMPs and inflammatory mediators [52-55]. Afamin
was recently identified as a novel vitamin E binding protein
[56]. Vitamin E confers protection from oxidative damage by
scavenging reactive oxygen and nitrogen species [57]. Clus-
terin is produced in numerous tissues during tissue injury or in
disease states, and has also been shown to be produced by

Table 2

Significant differentially abundant proteins identified

GI# Protein description Upregulated in Specificity Sensitivity P value 
(Fisher's exact, two sided)

4885165 Cystatin A (stefin A) Control 0.650 1.000 1.92 × e-08

6995994 Aggrecan 1 (chondroitin sulfate proteoglycan 1) Control 0.650 0.974 2.30 × e-07

1651921 Dermcidin Control 0.600 1.000 1.13 × e-07

4502027 Albumin OA 0.950 0.718 7.96 × e-07

4502067 α1-Microglobulin/bikunin precursor OA 0.950 0.718 7.96 × e-07

4503689 Fibrinogen, α chain isoform α-E preprotein OA 0.950 0.718 7.96 × e-07

4503715 Fibrinogen, γ chain isoform γ-A precursor OA 1.000 0.744 1.43 × e-08

4557225 α2-Macroglobulin OA 0.950 0.718 7.96 × e-07

4557325 Apolipoprotein E OA 1.000 0.744 1.43 × e-08

4557327 Apolipoprotein H (β2-glycoprotein I) OA 1.000 0.744 1.43 × e-08

4557385 Complement component 3 (gel slice 3) OA 0.950 0.718 7.96 × e-07

4557385 Complement component 3 (gel slice 5) OA 1.000 0.744 1.43 × e-08

4557485 Ceruloplasmin (ferroxidase) OA 0.950 0.718 7.96 × e-07

4826762 Haptoglobin OA 0.950 0.718 7.96 × e-07

9257232 Orosomucoid 1 OA 0.850 0.667 2.51 × e-04

32483410 Group specific component (vitamin D binding protein) OA 1.000 0.744 1.43 × e-08

50345296 Complement component 4B preprotein (NP_001002029) OA 1.000 0.744 1.43 × e-08

5147611 PREDICTED: similar to apolipoprotein A-1 precursor (apo-A-1; XP_496536) OA 0.950 0.718 7.96 × e-07

55743122 Retinol-binding protein 4, plasma precursor (NP_006735) OA 0.900 0.692 1.87 × e-05

Eighteen proteins that were significantly differentially abundant (protein area) across control (n = 20) and OA (n = 39) groups by Wilcoxon's 
ranksum test at P < 1 × e-06. Sensitivity/specificity for each protein are calculated with respect to the number of samples of each group having 
protein area above or below the median area across all samples. The significance of median area dichotomy and true group label is assessed by 
two-sided Fisher's exact test. GI#, GenInfo accession.
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normal and arthritic chondrocytes [58]. It has numerous pro-
posed functions, including modulation of apoptosis by inhibi-
tion of Bax [59]. In situ hybridization demonstrates
upregulation of clusterin mRNA after exposure of chondro-
cytes to oxidative stress, and may represent another pathway
by which chondrocytes protect themselves from reactive oxy-
gen and nitrogen species [58]. Paraoxonase 1 is another anti-
oxidant protein whose activity probably mirrors the actvities of
the other antioxidants identified in the study. The presence of
high concentrations of these species in healthy SF suggests
that protection from oxidative stress is of particular importance
in the avascular cartilage and highly specialized tissue of the
joint lining.

The kallikrein-kinin system has been proposed to play a signif-
icant role in the inflammatory processes that underlie OA
[60,61]. Kallikrein cleaves high-molecular-weight kininogen to
yield bradykinin, a potent β2 agonist on endothelial cells, result-
ing in the release of prostacyclin and nitric oxide as well as
increased vascular permeability via opening of endothelial cell
tight junctions and relaxing of smooth muscle [62-64]. We
identified two elements of this system, namely kininogen-1 and
N-carboxypeptidase, which is a zinc metalloprotease that
degrades bradykinin and anaphylactic peptides of the comple-
ment system [65]. These observations are congruent with
previous work showing that SF contains all of the components
needed to generate kinins [66]. It is possible that disequilib-
rium between the rate of formation and breakdown of kinins
results in the inflammation, joint pain, and swelling that are
seen in patients with arthritis.

Our analyses identify members of the potently proinflammatory
complement cascade, including components C1, C3, C4, C6
and C8, as well as complement inhibitory proteins factors H
and I. Although blood (via ultrafiltration) could deliver comple-
ment found in SF, numerous groups have demonstrated com-
plement component production by synovial tissue cells [67-
71]. These observations raise the possibility that synovial tis-
sue generates these abundant protein species locally. Func-
tionally, the complement cascade is implicated in innate
immunologic defense of the avascular cartilage and SF as well
as in the pathophysiology of both OA and rheumatoid arthritis
[68,70,72-76].

Extracellular matrix and cartilage metabolism
Numerous extracellular matrix and cartilage metabolism pro-
teins also comprise a significant fraction of abundant soluble
proteins in SF. Collagen type VI (a minor species that is found
in hyaline cartilage), cartilage oligomatrix protein (a noncolla-
genous cartilage glycoprotein) and lumican (a member of the
small leucine-rich proteoglycans that bind collagen and carti-
lage intermediate layer protein) are all constituents of either
cartilage or synovial tissue extracellular matrix [77-82]. Their
presence in high abundance within healthy SF underscores
the highly active tissue repair and remodeling that is present in
joint tissues. Other proteins associated with cartilage physiol-
ogy that are present in high abundance in SF include prote-
oglycan 4 (a lubricating glycoprotein that is homologous to
lubricin) and insulin-like growth factor (IGF)-binding proteins
(which regulate the activity of the anabolic protein IGF-I). It is

Figure 2

Relative quantitation of biomarkers using total ion current data from mass spectrometryRelative quantitation of biomarkers using total ion current data from mass spectrometry. Determining cutoff values between control individuals and 
'diseased' cohorts is among the necessary criteria in identifying protein or gene targets as 'biomarkers'. EOA, early osteoarthritis; LOA, late 
osteoarthritis.
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noteworthy that IGF-I is one of the most important trophic fac-
tors for cartilage [42,83-85].

Interestingly, our studies identify a number of protein species
that have not previously been appreciated as abundant com-
ponents of SF. Demonstrating expression of hemopexin,
tetranectin, inter-α-trypsin inhibitor, histidine-rich glycoprotein,
gelsolin, vimentin, and numerous other protein species (Tables
1 and 3) suggests contributions by these classes of protein to
SF function. Further analyses of these species promises to
provide novel insights into SF physiology in health and
disease.

Finally, these pilot data also suggest that differentially
expressed abundant protein species in SF could be used as
biomarkers for diagnosis and monitoring of therapeutic
responses in OA. The ability of these candidate biomarkers to
distinguish OA patients from normal individuals adequately will
require validation in larger independent cohorts of patients.

Limitations
Although our studies identify a large number of abundant pro-
teins, a number of anticipated proteins are absent from our list.
A striking example is lubricin, a protein whose lubricating prop-
erties are critical for both cartilage and synovial lining physiol-
ogy [11]. Lubricin is present at 200 μg/ml in healthy SF
[10,11]. Absence of this protein in our studies suggests that
our level of sensitivity is less than 200 μg/ml, or it could repre-
sent a technical limitation of our approach. Lubricin has a Mr
in excess of 200 kDa, and penetration of large proteins into the
primary PAGE separation technique may limit sensitivity [11].

Our results must be interpreted in light of both of these tech-
nical limitations.

Articular cartilage matrix undergoes many changes to its struc-
ture, molecular configuration, and mechanical properties with
age, including surface fibrillations, increased collagen
crosslinking, and alterations in proteoglycan structure [86].
Prevalence studies have shown that after age 40 years the
incidence of OA increases with every passing decade [86-
88]. In an attempt to minimize confounding variables with
regard to the analysis of SF from patients with subclinical and
preradiographic OA, the control group for this study was cho-
sen from volunteers that were younger than 30 years old.
Implicit in this design was lack of age-matched control individ-
uals, because most patients with early and late OA are older
than 40 years. In addition, the early OA cohort did not control
for patients with inner-third meniscal tears who did not have
OA. Finally, the disease-specific performance of these candi-
date biomarkers was not studied, or were these biomarkers
tested against patient populations with varying age, sex, race,
or disease etiology (traumatic, infectious, and so on).

Our method of obtaining SF necessitated penetration of the
articular space using an 18-gauge needle, a process with
obligatory passage through skin and subcutaneous tissue.
Our method identified skin-specific keratin species within the
abundant proteins in SF. Knowing that these species could
only derive from skin, we removed these proteins from our sub-
sequent analyses. The extent of contamination by other skin
constituents in our analyses remains undefined.

Figure 3

Proteins differentially expressed between two subtypes of osteoarthritisProteins differentially expressed between two subtypes of osteoarthritis. OA, osteoarthritis.
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Conclusion
Our analyses demonstrate no disease duration-dependent dif-
ferences in abundant protein composition of SF in OA, and we
clearly identify two previously unappreciated distinct subsets
of protein profiles in this disease cohort. Additionally, our find-
ings identify novel abundant protein species in healthy SF
whose functional contribution to SF physiology was not previ-
ously recognized. Finally, these pilot data also suggest that dif-
ferentially expressed abundant protein species in SF could be
used as biomarkers for diagnosis and monitoring of therapeu-
tic responses in OA. The ability of these candidate biomarkers
to distinguish OA patients from normal individuals adequately
will require validation in larger independent cohorts of patients.
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